Categories: Industry News

Pourquoi et quand les avions seraient électriques ? – AeroBuzz.fr

Avant de lire l’article

L’article est classé dans la catégorie « débat et opinion », il reflète donc le point de vue de l’auteur. Il n’engage pas la rédaction d’Aerobuzz. Si vous souhaitez, réagir n’hésitez pas à le faire via les commentaires au bas de la page.

La certification par l’EASA du premier aéronef électrique, arrivant par coïncidence au moment de la crise de l’aviation que l’on sait, avive beaucoup de fantasmes et apporte beaucoup de confusion sur l’aviation électrique et sur les enjeux environnementaux. Je ne veux surtout pas passer pour un spécialiste pointu de ces domaines, pas plus pour un spécialiste de l’aviation.  Il y en a sur ce forum, comme Jean-Marie Klinka (avions) ou Gilles Rosenberger (batteries), et j’espère recevoir leurs arguments critiques.

Par contre, si j’ai attendu d’avoir 18 ans et de construire un avion pour faire mon baptême de l’air (et avoir ma première nausée), j’ai appris depuis tout petit les lois énergétiques qui nous gouvernent (mon père et mon grand-père étaient physiciens – ingénieurs).  Et je les pratique encore tous les jours.

En gros, je vois quatre raisons différentes pour lesquelles tant de gens s’excitent, pour ou contre l’aviation électrique :

  1. Tout le monde, la multitude des consommateurs et les politiques, parlent d’électrique dans absolument tous les domaines, notamment les transports. « Electric is beautiful ! »,
  2. Un avion électrique est supposé avoir des qualités particulières,
  3. Un avion électrique n’émet pas de CO² (pas directement), gaz dont l’accroissement par milliards de tonnes, depuis seulement une soixantaine d’années, est considéré par beaucoup comme un risque majeur pour l’humanité,
  4. Il est dans l’air du temps qu’avec les progrès passés et futurs des batteries et des piles à hydrogène l’avion électrique soit techniquement viable un jour, et donc qu’il faille se positionner pour préparer l’avenir.

Je passe sur la raison N°1, de mode, au fond sans intérêt, sauf à dire que comme (presque) tout le monde, je crois que ma prochaine voiture sera électrique et que j’adorerai ça.

La raison N°2 :  les qualités supposées.

J’en vois une très importante : le silence. J’habite et je travaille sur un des aérodromes les plus menacés de France, et chaque réunion des associations, chaque réunion de la CCE (Commission Consultative de L’Environnement, organisée par la Préfecture) me démoralise. Oui, le bruit des avions et hélicoptères est rejeté par les autres !

Ceci dit, d’une part il reste à montrer que si nous diminuions notre bruit, même beaucoup, cela rende les riverains moins agressifs ; d’autres facteurs sont cachés : la peur irrationnelle et l’intérêt immobilier notamment.

Pour le bruit il n’est pas rationnel de passer du Lycoming à l’électrique en sacrifiant les trois-quarts des performances, avant d’avoir fait quelques sacrifices sur les moteurs à essence.

En France, il a fallu 20 ans pour mettre des silencieux primitifs sur les DR 400.  Ici à Aix, un seul Fouga Magister, en 8 jours par an, soulève autant de plaintes que 50 avions monomoteurs basés.  Quitte à changer les avions, on pourrait faire beaucoup de progrès (sauf électrifier le Fouga ?). J’ai vu voler à Mojave un avion de la taille du Cirrus, développé par Burt Rutan pour Toyota, propulsé par le V8 de 300 ch dérivé de la Lexus : à 150 kt, on entendait au sol l’air passer sur les ailes… Et l’avion avait 6 ou 7 heures d’autonomie.

Attention ! sans sacrifice performances/masse concernant tout l’avion, l’hélice fait beaucoup de bruit, autant pour un moteur électrique que pour un moteur thermique, donc dans tous les cas il faut faire des sacrifices de masse supplémentaires, qui augmenteront avec la puissance : diamètre d’hélice, masse du réducteur, longueur du train d’atterrissage.

Un moteur électrique performant demandera un entretien programmé pointu, même si on ne change pas de pièce d’usure.

Une deuxième qualité revendiquée de l’électrique est le coût de maintenance, supposé nul puisque le moteur est supposé sans entretien, comme celui d’une machine à laver.  Là, il faut être naïf pour le croire : d’abord le moteur d’un avion n’accapare que la moitié de son entretien, ensuite un moteur électrique performant, qui sera équilibré, lubrifié, alimenté par une électronique très complexe et puissante (l’ECU), le tout refroidi par liquide pressurisé (indispensable en altitude), le tout certifié comme fonction « critique », demandera un entretien programmé pointu, même si on ne change pas de pièce d’usure.

Par ailleurs, en absence d’expérience, comparer le coût de remplacement de la batterie limitée en cycles, avec celui du moteur à pistons limité en TBO, relève aujourd’hui de la spéculation.

Quand même, bravo Pipistrel ! J’admire ce qu’ils ont réussi et j’espère voler en Velis, mais il est bien possible que le Velis ait plus de succès grâce au silence intérieur et extérieur que par sa nature électrique ou son coût total sur une vie.

La raison N°3 : La principale motivation de l’électrique est bien la peur du réchauffement climatique et la volonté de réduction des émissions de CO².

Je n’ai aucun poids pour participer au débat de fond. Personnellement, je crois aux analyses des scientifiques et ingénieurs comme la commission Meadows, initiée en 1972 et sans cesse recalée depuis, ou Jean-Marc Jancovici. Ils précisent bien leurs hypothèses et leurs sources. J’ai donc un vrai sentiment d’urgence, et mes enfants encore plus, mais je crois à l’avenir et à la science, et je ne veux pas me suicider. Voir la géniale chanson de Brassens « Mourir pour des idées ».

Tous les modèles sont d’accord : il faut réduire les émissions de CO² de moitié d’ici 2030 à 2040, et c’est partout, y compris dans l’aviation. L’aviation ne consomme que 8% des hydrocarbures (source : Total) ? Oui, mais les transports maritimes 7%, terrestres 20 %, la nourriture 15 %, le chauffage 10 % etc.  Et s’il faut choisir, on arrête quoi ? L’aviation française est négligeable ? Oui, mais elle a donné et donne l’exemple, et chacun sa part.

Les avions ont gagné 70 % d’économie en 50 ans ? Oui, mais leur usage a été multiplié par 20.

Le train émet autant que l’avion ? Tous les modes de calcul disent le contraire, cinq ou dix fois moins. Celui qui ne croit pas que l’aviation doit réduire ses émissions de CO², doit arrêter de lire ici.

Si on admet que l’aviation doit réduire ses émissions de CO², la première chose à dire, redire et ressasser ad nauseum, c’est que :

Ni l’électricité, ni l’hydrogène ne sont des sources d’énergie. Ce sont des vecteurs.

Les deux ne peuvent être produits que de trois façons :

  1. Les énergies fossiles – pétrole et charbon –de loin la façon la plus courante dans le monde, mais précisément l’ennemi à abattre contre le réchauffement. Il faut rappeler – crier aux stratèges et aux politiques ! – que l’hydrogène est essentiellement produit par cracking du gaz naturel, libérant autant de CO² que la combustion.
  2. Le nucléaire, qui produit 80 % de l’électricité en France, et qui permet aussi de produire de l’hydrogène par électrolyse de l’eau – ce qui en fait un vecteur aussi rare et noble que l’électricité.  Le nucléaire, ennemi public N°1 pour presque toute la population…
  3. Le solaire et l’éolien.  Je renvoie aux conférences de Jean-Marc Jancovici comme celle à l’Ecole des Mines (cliquer ici), pour comprendre pourquoi l’augmentation du parc solaire et éolien va toujours avec une augmentation des émissions de CO², du fait de l’intermittence de ces énergies. L’exemple de l’Allemagne est convaincant.

Si on considère pour tous les moyens de transport, les contraintes physiques de coût énergétique de l’emport de son énergie (suivez bien et excusez-moi ?), il est clair qu’elles varient fortement :

  • Négligeables pour un cargo (1% de sa charge utile est du carburant, surcoût de transport parfaitement négligeable)
  • Très faible pour un tracteur ou un camion de 40 t (200 kg de carburant pour 35 t de charge payante),
  • Faibles pour une voiture (50 kg de carburant pour 200 kg de charge payante) ou un avion court–courrier,
  • considérables enfin pour un avion long-courrier ou un hélicoptère : la masse de carburant est égale ou supérieure à la charge payante, et il faut la monter très haut.

Il est donc rationnel que si le but premier est de réduire les émissions de CO² grâce à l’électrification, les avions de ligne et les hélicos soient les derniers véhicules à passer en tout-électrique au fur et à mesure des progrès des batteries ou des piles à combustible.

  • Comme un monde où tout serait électrique et avec moitié moins de CO² serait un monde tout-nucléaire (voir JM Jancovici), et que ça ne se fera jamais, on voit bien que le seul but qui compte n’est pas l’électrification, mais la réduction de puissance et d’usage de la puissance.

Pour illustrer, j’ai bricolé un calcul, en partant de la consommation de kérosène de Roissy :

  • Si tous les avions de CDG étaient électriques à super-batteries, ou à hydrogène produit électriquement (faut-il le rabâcher ? l’hydrogène n’est pas une source d’énergie pour l’humanité, juste un media),
  • Si tout cela était alimenté par des centrales nucléaires fonctionnant en moyenne comme les 58 tranches françaises (80 % de charge environ, ce qui est très bon),

Combien faudrait-il construire de tranches nucléaires à Roissy ?

Moi, j’ai trouvé 8 tranches (j’attends les corrections ?). Et donc une poignée de plus pour Nice, Lyon, etc, rien qu’en France. 15 tranches, c’est ce que le gouvernement a promis de détruire d’ici 10 ans, promesse électorale pure qu’il ne pourra pas tenir… Ca se passe de commentaire !

Dans le même ordre d’idée, avec les mêmes hypothèses optimistes, si les mêmes avions électriques étaient rechargés par des panneaux solaires, il faudrait, pour alimenter CDG :

  • 50 km² de panneaux solaires pour tenir pendant l’heure la plus ensoleillée de l’année (1 kW solaire/m², en été à midi),
  • 600 à 700 km² de panneaux solaires pour tenir toute l’année, hiver et nuit compris (source ADEME : 160 kWh/m²/an en région Parisienne). Il faudrait aussi un monstrueux système d’accumulation à batteries ou à hydrogène, lui-même aujourd’hui impossible.

De fait, la consommation énergétique annuelle des vols décollant de CDG, de l’ordre de 50 milliards de kWh /an, c’est 6 fois la production solaire nationale, ou toute la production hydroélectrique nationale (source site EDF).

On peut faire le calcul en bois-énergie, autre énergie « décarbonée » (sans émission de CO² sur un cycle). On trouve un million de semi-remorques de bois qui défilent à Roissy chaque année. Un toutes les 20 secondes, à temps plein ! Il y a deux pipe-lines de kérosène aujourd’hui.

Alors, ça vous paraît toujours « négligeable » devant le reste ?

Donc c’est bien sur tous les thèmes qu’il faut travailler dur pour continuer à voler à long terme : le rendement des avions, les énergies, et évidemment leur moindre utilisation, à meilleur escient.

Bien sûr, il n’y a quasiment aucun rapport entre l’aviation de ligne et l’aviation légère, à part les pilotes et l’espace aérien. Sauf que la deuxième consomme 300 fois moins de carburant que la première (source : site Total), et concerne en gros 80.000 personnes (40.000 pilotes privés) contre 10 ou 20 millions. C’est du même ordre de grandeur.

Raison N°4 : la faisabilité de l’avion électrique

Il y a 10 ou 20 ans que la grosse aviation certifie des batteries au Lithium. Il y a 50 ans qu’elle certifie des installations électriques de forte puissance à haute tension (en fait, entre 50 et 1500 V c’est de la « moyenne tension », mais dans un avion ça commence à faire…).

Boeing a commencé le Lithium vers 2000 et a obtenu la certification du 787 en 2011, suivie rapidement d’une interdiction de vol générale suite à un feu de batterie…

Comme beaucoup d’autres, et à tout petit niveau, je travaille sur la certification d’une batterie Lithium. J’ai aussi fait, comme beaucoup d’autres, un avant-projet d’hélicoptère électrique. Cela ne fait pas de moi un spécialiste, loin de là, mais ça m’évite de dire trop de bêtises.

D’abord il faut comprendre que la certification est un processus à étages, pas juste un concours de beauté. Les normes de certification de l’EASA et de la FAA (CS 23 pour les avions, CS 27 pour les hélicos, etc. ) sont assez courtes, mais renvoient souvent à des normes de base beaucoup plus détaillées.

Les normes de base pour l’électricité utilisées pour les véhicules dans le monde entier, et pas seulement pour l’aéronautique, sont les RTCA-DO américaines :

  • la DO-160 pour les aspects physiques : 24 chapitres, de la température au feu, en passant par l’humidité, les vibrations, les rayonnements, les moisissures. Elle évolue depuis des décennies,
  • la DO-311 spécialement créée pour les batteries au Lithium, suite à l’accident du 787, en 2012,
  • la DO-178 pour le logiciel, et d’autres.

Il est aussi très important de comprendre que toutes ces normes ne donnent que des exigences, des contraintes, mais aucune solution ni recette.

Elles ont toutes de nombreux chapitres et de multiples niveaux d’exigence. Ce qui compte pour une norme, c’est le niveau d’exigence auquel on la satisfait, pas juste son nom. Il y a donc des milliers de niveaux de certification différents.

Aujourd’hui, c’est l’opinion publique, et sous sa pression, l’EASA, qui exige des niveaux de sécurité extrêmement élevés en transport public, donc des niveaux d’exigence élevés pour les trois DO.  Et c’est ça qui fixe la difficulté de certifier.

Dans le cas des accumulateurs au Lithium

En 1999, mon ordinateur portable avait un accu au Lithium, c’était tout nouveau. Il était composé de 8 éléments 18.650 (18 mm de diamètre x 65 mm de long). 20 ans après, les 18.650 sont encore le format le plus produit au monde : ils sont fabriqués par milliards en Chine, Corée, etc. La Gigafactory  Tesla/Panasonic, au Nevada, en produit 6 milliards par an ! (le Model S en a 11.000) pour 0,8$ pièce (source Wikipedia). Les mêmes accus équipent mes outils sans fil et mon vélo électrique (72 éléments, soit 500 Wh). En petite quantité industrielle, un 18.650 made in China vaut 2 ou 3$, et pour ma tronçonneuse, le pack de douze 18.650 Panasonic-China vaut 200 € – évidemment, avec le boîtier plastique, c’est beaucoup plus cher…

Dans tous les media, on lit que le rapport énergie/masse progresse de « façon exponentielle » depuis 20 ans. Déjà, c’est une insulte aux maths et aux exponentielles ; c’est idiot, mais bon, c’est une façon de parler. Mais surtout, la progression est complètement survendue.

Le rapport énergie/masse de l’accu complet dépend fortement de nombreux points :

  • Le rapport masse/énergie de la technologie employée,
  • La quantité de cuivre pour raccorder les éléments : plus on veut limiter la masse de cuivre, plus il faut monter en tension, et là, ça coûte cher en isolations et protections,
  • Leur système de refroidissement (rien pour mon ordi, un petit ventilateur pour mon vélo, une circulation d’eau complexe pour la Tesla, etc.),
  • Le niveau de blindage thermique pour tenue en propagation du feu, surtout depuis l’accident du 787. C’est la fameuse condition de la DO 311 du « thermal runaway», ou divergence thermique,
  • Le niveau de blindage mécanique, notamment pour éviter le feu post-crash,
  • Le niveau de décharge accepté,
  • Le niveau de vitesse de charge/recharge demandé,
  • J’en oublie sûrement.

Alors on arrive à quoi en pratique ?

  • La batterie de mon ordi au siècle dernier donnait 160 Wh/kg (charge et décharge lente),
  • Les packs « haute performance » des outils électriques récents font 110 à 120 Wh/kg (charge et décharge rapides),
  • Pour les Tesla ou la Zoé, on parle aussi de 110 Wh/kg, à cause de la sécurité, mais aussi beaucoup à cause de la charge rapide et de la durabilité, qui fait peur à tout le monde : contrairement à un aéronef, personne n’accepterait de changer la batterie de sa voiture plusieurs fois,
  • Dans les premiers 787, j’ai lu un jour qu’ils partaient en 2011 à plus de 100 Wh/kg, et qu’ils sont maintenant vers 50 Wh/kg,
  • Le Solar Impulse, doté des toutes dernières technologies, partait avec une batterie de 250 Wh/kg , avec charge et décharge très lentes, durée de vie faible. Il a beaucoup régressé après l’incendie subi au Japon (valeurs à confirmer),
  • Les seules batteries Lithium certifiées pour l’aviation générale, les True Blue, sont à 65 Wh/kg, toutes les tailles,
  • Une batterie en cours de développement et de certification pour « un grand groupe aéronautique européen », en 2020, est à 56 Wh/kg. Le niveau de protection thermique exigé est nettement supérieur.
  • Pour mémoire, une batterie au plomb est aux alentours de 25 Wh/kg à poil, 20 Wh/kg protégée.

Alors elle est où la fameuse « loi de Moore des batteries » ?  C’est une loi à exposant négatif ?

Pour mémoire, la loi de Moore, invention purement médiatique, aucunement scientifique, constate et ne prédit pas, que la capacité des ordinateurs double tous les deux ans – c’est donc bien une exponentielle de période 2 ans. C’était 16 mois en 1960, 24 mois en 1980, et c’est en fort ralentissement en 2020, donc la loi n’est pas si exponentielle que ça ?, merci Euler.

Bien sûr, les batteries ont beaucoup progressé et progresseront encore avec les efforts de recherche immenses, mais on voit bien que les exigences de sécurité aussi progressent, que cela n’est pas près de s’arrêter, et que le résultat net interdit de rêver.

Je recommande la lecture de ce rapport très technique :

Lessons learned from the 787 lithium battery, dont une conclusion est : « The added weight of the enclosure surrounding the battery pack negates the energy density benefits that motivated the use of lithium-ion batteries in the first place. To prevent over-engineering and to realize the full potential of lithium-ion batteries in future applications, all failure mechanisms must be identified and understood, and BMSs must be designed to account for these vulnerabilities. »

Pipistrel là-dedans ?

Aparté : C’est extrêmement difficile aujourd’hui de tenir un propos réaliste au sens de la science et de l’industrie, sans être jeté dans le sac des polémistes ou des dinosaures aigris, de ceux qui ont prédit que le chemin de fer ou le téléphone ne perceraient jamais, etc. Même dans les forums comme Aerobuzz. Et pourtant, il y a une voie entre Trump et les écologistes radicaux. C’est pas la voie facile !

Je l’ai dit, je trouve remarquable ce qu’a fait Pipistrel, d’autant que je pratique sans arrêt les ingénieurs de l’EASA.Ils ont réussi à trouver un compromis de technologies existantes, et de niveau d’exigence pour atteindre la certification EASA. Et l’EASA a réussi à faire un compromis réglementaire, et ce sont deux mots qui vont très mal ensemble.

Ceci dit, c’est une certification CS-VLA, sans grand rapport avec Airbus et le transport public IFR.

La batterie du Velis, qui est de technologie Lithium « état de l’art industriel », ne peut pas satisfaire aux exigences de sécurité imposées aux gros avions, vu qu’elle pèserait 400 kg (voir ci-dessus). Je n’en sais pas plus. Un facteur 2, c’est pas un détail.

Pipistrel n’a pas pu faire évoluer les normes de sécurité DO-160 et DO-311 ; il a trouvé avec l’EASA une interprétation acceptable pour la petite aviation.

C’est pour dire que cela n’apportera strictement rien à Airbus, à part peut-être… des crédits de recherche politiques, en faisant écrire « Avion électrique » dans tous les journaux de France, juste la bonne semaine en plus.

Ce n’est pas parce qu’on reconnaît que les ingénieurs de Pipistrel ont fait une prouesse, qu’il faut prendre les ingénieurs d’Airbus, Tesla, Panasonic, LG, Toyota etc. pour des arriérés ankylosés. Beaucoup sont passionnés et compétents, mais leur boulot n’est pas dans le même monde.

Pipistrel aura certainement pour mérite d’avoir commencé à habituer les pilotes privés à voler en électrique, mais n’aura jamais aucun effet sur le niveau d’exigence du grand public en termes de sécurité. Sans parler des performances évidemment.

L’hybride, entre effet de mode et réalité

Enfin : pour les acharnés qui sont arrivés jusqu’ici, je veux dire un mot de l’hybride, qui est extrêmement à la mode – avec ce que cela comporte d’intéressant et aussi d’irrationnel.

Le concept hybride est arrivé par l’automobile – précisément par Toyota.

Une voiture européenne moyenne typique, de Peugeot, Renault, Volkswagen etc. a un moteur diesel turbo common rail, d’environ 2 litres de cylindrée (le même raisonnement s’applique avec la nouvelle génération à essence), capable de développer entre 130 et 180 ch. Le seuil de performance d’économie, pour ces moteurs, qui se compte de nos jours en grammes de CO², est de 100 g/km en mode mixte (soit environ 5 litres/100 km). Pour ces moteurs, 100g de CO² par km correspond à une puissance moyenne continue de 17 ch précisément (source confidentielle, mais fiable). Donc l’usage moyen d’une voiture de puissance raisonnable est de 10% de sa puissance. Or, le rendement de ces moteurs est remarquable à pleine puissance, mais se dégrade beaucoup, de presque moitié à ce régime de 10 %.

Le principe de l’hybridation est donc d’utiliser un moteur nettement moins puissant, ou le même moteur fonctionnant de façon intermittente, mais plus près de son rendement optimum. Une batterie et un moteur électrique assurent, d’une part un apport de puissance pour les crêtes de besoin, d’autre part tout le besoin quand il est très faible.

Pour une voiture, ça a fait ses preuves apparemment, surtout quand le spectre d’utilisation est très varié : 5 % de puissance nécessaire en moyenne en ville, 2% dans les bouchons (chauffage ou clim). Forcément moins sur l’autoroute où le spectre de puissance est très plat (genre 30 % de puissance 80 % du temps).

Pour un petit avion, l’hybridation a un sens : un moteur plus petit assure à pleine puissance une croisière modérée avec un très bon rendement, et pour le décollage court, un moteur électrique, qui peut développer de fortes puissances pendant une courte durée pour peu de masse, sert de « catapulte », qui est rechargée en vol.  Au sens énergétique, cela n’a presque rien d’électrique : toute l’énergie est thermique, sauf l’appoint du premier décollage.

Pour un avion de ligne, c’est très différent, car la croisière fait la grande majorité de la durée du vol, et elle est à haute altitude, où du fait de la densité de l’air trois fois moindre, l’avion va deux fois plus vite qu’à basse altitude.

Après des décennies de travail d’optimisation et de progrès, les avions modernes décollent plein pot sur des longueurs acceptables, montent presque plein pot, et croisent en altitude à un tiers de leur poussée au sol, mais près de leur poussée maxi, qui est celle du meilleur rendement. Une hybridation n’a plus de sens au premier ordre.

Je n’ai pas la prétention d’expliquer leur métier aux ingénieurs de Rolls Royce, qui obtiendront peut-être des progrès (ceci dit, il semble qu’ils aient mis ces travaux en sommeil) mais juste celle d’arrêter les fantasmes basés sur l’automobile.

L’hybridation est une hérésie complète pour un hélicoptère monomoteur.

Et pour conclure là où je suis à peu près compétent, l’hybridation est une hérésie complète pour un hélicoptère monomoteur : il décolle plein pot, près du rendement maxi de son moteur, et vole à 85 % de puissance, juste au rendement maxi.

La preuve : nous volons en ce moment en Cabri et VSR 700 avec le même moteur diesel HDI (c’est-à-dire turbo common rail) de 2 litres, d’origine automobile, 170 ch de puissance maxi, et la puissance moyenne sur la mission hélicoptère est de… 140 ch, contre, je le rappelle, 17 ch dans l’auto.

Ce qui en fait quand même l’hélicoptère le moins gourmand du monde, et qui émet de loin le moins de CO² au kilo transporté du monde.

Pour remercier ceux qui ont tout lu, s’il y en a, je répondrai à leurs questions et objections, ou je les renverrai à Jean-Marc Jancovici.

Bruno Guimbal

Retrouvez nous en podcast et vidéo

A propos de Bruno Guimbal

chez Aerobuzz.fr
Bruno Guimbal est un ingénieur passionné par les machines, qu’elles soient « outil » ou « volantes ». A la fin des années 2000, après avoir quitté Eurocopter, il a créé sa société « Hélicoptères Guimbal » pour produire un hélicoptère biplace léger, le Cabri G2.
admin

Share
Published by
admin

Recent Posts

Avesnois: aider à produire son électricité solaire, la lumineuse idée du Parc – La Voix du Nord

Le Parc naturel régional (PNR) de l’Avesnois comme on l’aime ! C’est-à-dire source de propositions pour…

20 minutes ago

Investissement: En finir avec le dogme des ratios financiers – L’Économiste

La crise du Covid-19 impose plus que jamais aux chefs d’entre­prise de se repenser. C’est…

21 minutes ago

Enerlis : l’entreprise qui accélère la transition énergétique – Magazine Décideurs

Décideurs : Qu’est ce qui a présidé à la création d’Enerlis ? Comment les enjeux écologiques sont…

2 heures ago

Enfin le vrai départ pour l’énergie hydrogène et la pile à combustible ? – Le nouvel Economiste

Il est généralement admis que les voitures électriques à batterie sont l’avenir de l’automobile. Mais…

2 heures ago

Ecoparc Catalan : visites guidées de quatre communes cet été – LE JOURNAL CATALAN

Dans le cadre du projet de développement économique du territoire Ecoparc Catalan, la Communauté Urbaine…

3 heures ago

Autoconsommation électrique : enjeux et pistes de valorisation – Cahiers Techniques du Bâtiment

Alors que les énergies renouvelables devront représenter au mois 35% du mix électrique en 2028,…

4 heures ago

This website uses cookies.